Nội dung chính bài viết
- Phương trình đường tròn tiếp xúc với 1 đường thẳng
- Phương trình đường tròn tiếp xúc với 2 đường thẳng
Phương trình đường tròn tiếp xúc với 1 đường thẳng
Dạng 1: Đường tròn (C) có tâm I và tiếp xúc với đường thẳng (Delta)
Khi đó bán kính (R = d (I, Delta ))
Ví dụ 1: Lập phương trình đường tròn (C) có tâm I(-1,2) tiếp xúc với đường thẳng (Delta) x – 2y + 7 = 0
Giải: Ta có (d(I,Delta)=frac{|-1-4-7|}{sqrt{5}})
Phương trình đường tròn (C) có dạng ((x+1)^2+(y-2)^2=frac{4}{5})
Dạng 2: Đường tròn (C) đi qua hai điểm A, B và tiếp xúc với đường thẳng (Delta)
- Viết phương trình đường trung trực d của đoạn AB
- Tâm I của (C) thỏa mãn (left{begin{matrix} I epsilon d & d(I, Delta ) = IA & end{matrix}right.)
- Bán kính R = IA
Ví dụ 2: Cho điểm A(-1;0), B(1;2) và đường thẳng (d): x – y – 1 = 0. Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng d.
Giải: Gọi I(x,y) là tâm của đường tròn cần tìm. Từ điều kiện đề bài ta có:
IA = IB = r (Leftrightarrow) ((x+1)^2+y^2= (x-1)^2+(y-2)^2) (1)
IA = d(I,d) (Leftrightarrow) (sqrt{(x+1)^2+y^2}=frac{|x-1-y|}{sqrt{2}}) (2)
Giải hệ gồm 2 phương trình (1) và (2) ta được x = 0, y = 1
Vậy I(0,1) IA = r = (sqrt{2})
Phương trình đường tròn (C) có dạng (x^2+(y-1)^2 = 2)
Dạng 3: Đường tròn (C) đi qua điểm A và tiếp xúc với đường thẳng (Delta) tại điểm B.
- Viết phương trình đường trung trực d của đoạn AB
- Viết phương trình đường thẳng (Delta ‘) đi qua B và (perp Delta)
- Xác định tâm I là giao điểm của d và (Delta ‘)
- Bán kính R = IA
Ví dụ 3: Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A(6,0) và đi qua điểm B(9,9)
Giải: Gọi I(a,b) là tâm đường tròn (C)
Vì (C) tiếp xúc với trục hoành tại A(6;0) nên (I epsilon d: x = 6)
Mặt khác B nằm trên đường tròn (C) nên I sẽ nằm trên trung trực của AB
Ta có phương trình trung trực AB: x + 3y – 21 = 0
Thay x = 6 => y = 5
Suy ra ta tìm được tọa độ điểm I(6;5), R = 5
Vậy phương trình đường tròn (C): ((x-6)^{2} + (y – 5)^{2} = 25)
>> Xem thêm: Phương trình tiếp tuyến của đường tròn và các dạng bài tập – Toán học 12
Phương trình đường tròn tiếp xúc với 2 đường thẳng
Dạng 1: Đường tròn (C) đi qua điểm A và tiếp xúc với hai đường thẳng (Delta _{1}, Delta _{2})
- Tâm I của (C) thỏa mãn: (left{begin{matrix} d(I,Delta _{1}) = d(I,Delta _{2})& d(I,Delta _{1}) = IA & end{matrix}right.)
- Bán kính R = IA
Ví dụ 4: Viết phương trình đường tròn tiếp xúc với hai đường thẳng 7x – 7y – 5 = 0 và x + y + 13 = 0. Biết đường tròn tiếp xúc với một trong hai đường thẳng tại M (1,2).
Giải: Gọi I(x,y) là tâm đường tròn cần tìm. Ta có khoảng cách từ I đến 2 tiếp điểm bằng nhau nên (frac{|7x-7y-5|}{sqrt{5}} = frac{left | x + y + 13 right |}{sqrt{1}}) (1)
và (frac{|x+y+13|}{sqrt{2}}=sqrt{(1-x)^2+(2-y)^2}) (2)
Giải hệ gồm 2 phương trình (1) và (2) ta được
- TH1: x = 29, y = – 2 => R = IM = (20sqrt{2})
Phương trình đường tròn có dạng ((x-29)^2+(y+2)^2=800)
- TH2: x = – 6, y = 3 => R = (5sqrt{2})
Phương trình đường tròn có dạng ((x+6)^2+(y-2)^2=50)
Dạng 2: Đường tròn (C) tiếp xúc với hai đường thẳng (Delta _{1}, Delta _{2}) và có tâm nằm trên đường thẳng d.
- Tâm I của (C) thỏa mãn (left{begin{matrix} d(I,Delta _{1}) = d(I,Delta _{2})& Iepsilon d & end{matrix}right.)
- Bán kính (R = d(I,Delta _{1}))
Ví dụ 5: Viết phương trình đường tròn đi qua A(2,-1) và tiếp xúc với hai trục tọa độ
Giải: Gọi I(a,b) là tâm của đường tròn (C)
Do (C) tiếp xúc với 2 trục tọa độ nên I cách đều 2 trục tọa độ. Suy ra: |a| = |b|
Nhận xét: Do đường tròn tiếp xúc với 2 trục tọa độ nên cả hình tròn nằm trong 1 trong 4 góc của hệ trục, lại có A(2, -1) thuộc phần tư thứ IV
=> Tâm I thuộc phần tư thứ IV => a > 0, b < 0
Như vậy tọa độ tâm là I(a, -a), bán kính R = a, với a > 0
Ta có phương trình đường tròn (C) có dạng ((x-a)^2 + (y+a)^2 = a^2)
Do A (-2;1) thuộc đường tròn (C) nên thay tọa độ của A vào phương trình (C) ta được: ((2-a)^2 + (1+a)^2 = a^2)
Giải phương trình ta được a = 1 hoặc a=5
- Với a = 1 ta có phương trình (C) ((x-1)^2 + (y+1)^2 = 1)
- Với a = 5 ta có phương trình (C) ((x-5)^2 + (y+5)^2 = 5^2)
Trên đây là bài viết tổng hợp kiến thức viết phương trình đường tròn tiếp xúc với đường thẳng. Nếu có băn khoăn, thắc mắc hay góp ý xây dựng bài viết các bạn để lại bình luận bên dưới nha. Cảm ơn bạn, thấy hay thì đừng quên chia sẻ nhé <3
Tác giả: Việt Phương